Cosmology Cheat Sheet

Unit Conversion Calculator

Use this calculator to convert between units. To convert to a dimensionless number, input GeV^0 as the output unit.

Planck 2018 Best Fit Cosmology

Adapted from Wikipedia

ParameterSymbolTT,TE,EE+lowE +lensing 68% limitsTT,TE,EE+lowE +lensing+BAO 68% limits
Baryon density$\Omega_b h^2$0.02237±0.000150.02242±0.00014
Cold dark matter density$\Omega_c h^2$0.1200±0.00120.11933±0.00091
100x approximation to rs / DA (CosmoMC)$100\theta_{MC}$1.04092±0.000311.04101±0.00029
Thomson scattering optical depth due to reionization$\tau$0.0544±0.00730.0561±0.0071
Power spectrum of curvature perturbations$\ln(10^{10}A_s)$3.044±0.0143.047±0.014
Scalar spectral index$n_s$0.9649±0.00420.9665±0.0038
Hubble’s constant (km s$^{-1}$ Mpc$^{-1}$)$H_0$67.36±0.5467.66±0.42
Dark energy density$\Omega_\Lambda$0.6847±0.00730.6889±0.0056
Matter density$\Omega_m$0.3153±0.00730.3111±0.0056
Density fluctuations at 8h$^{-1}$ Mpc$S_8 = \sigma_8(\Omega_m/0.3)^{0.5}$0.832±0.0130.825±0.011
Redshift of reionization$z_{re}$7.67±0.737.82±0.71
Age of the Universe (Gy)$t_0$13.797±0.02313.787±0.020
Redshift at decoupling$z_*$1089.92±0.251089.80±0.21
Comoving size of the sound horizon at z = z* (Mpc)$r_*$144.43±0.26144.57±0.22
100× angular scale of sound horizon at last-scattering$100\theta_*$1.04110±0.000311.04119±0.00029
Redshift with baryon-drag optical depth = 1$z_{\rm drag}$1059.94±0.301060.01±0.29
Comoving size of the sound horizon at z = z_drag$r_{\rm drag}$147.09±0.26147.21±0.23
Legend:
  • 68% limits: Parameter 68% confidence limits for the base ΛCDM model
  • TT, TE, EE: Planck Cosmic microwave background (CMB) power spectra; TT represents temperature power spectrum, TE is temperature-polarization cross spectrum, and EE is polarisation power spectrum
  • lowE: Planck polarization data in the low-ℓ likelihood
  • lensing: CMB lensing reconstruction
  • BAO: Baryon acoustic oscillations, JLA: Joint Light-curve Analysis (of supernovae), H0: Hubble constant

Important Events in Cosmology

Eventtime $t$Redshift $z$Temperature $T$
EW Phase Transition20 ps$10^{15}$100 GeV
QCD Phase Transition30 $\mu$s$10^{12}$150 MeV
Neutrino Decoupling1 s$6\times 10^9$1 MeV
$e^+ e^-$ annihilation6 s$2\times 10^9$
BBN3 min$4 \times 10^8$100 keV
Equality60 kyr34000.75 eV
Recombination260-380 kyr1100-14000.26 - 0.33 eV
Photon Decoupling380 kyr1000-12000.23 - 0.28 eV
Reionization100-400 Myr11-302.6 - 7.0 meV
DM-$\Lambda$ Equality9 Gyr0.40.33 meV
Present13.8 Gyr00.24 meV

Scalings

Radiation DominationMatter Domination$\Lambda$ Domination
$a(t)$$t^{1/2}$$t^{2/3}$$\exp(H_0 t)$
$\eta(a)$$a$$a^{1/2}$
$H(a)$$a^{-2}$$a^{-3/2}$const.

Formula Sheet

$$ \begin{align*} \frac{dz}{dt} &= H(z) (1+z)\\ \frac{d}{d\eta} &= a^2 H \frac{d}{da}\\ \frac{H^2}{H_0^2}&= \Omega_{r,0}\alpha^{-4} + \Omega_{0,m}\alpha^{-3} + \Omega_{0,k}\alpha^{-2}+\Omega_{0,\Lambda} \\ \end{align*} $$

Particle Physics

Mandelstam Variable Identities

Identities for $2\to 2$ scattering where the incoming particles have momenta and masses $p_1, p_2$ and $m_1, m_2'$ respectively. The outgoing particles have momenta and masses $k_1, k_2$ and $m_1', m_2'$.

$$ \begin{align*} p_1 \cdot p_2 & = s - m_1^2 - m_2^2 \\ k_1 \cdot k_2 & = s - m_1'^2 - m_2'^2 \\ p_1 \cdot k_1 & = m_1^2 + m_1'^2 - t \\ p_2 \cdot k_2 & = m_2^2 + m_2'^2 - t \\ p_1 \cdot k_2 &= m_1^2 - m_2'^2 - u \\ p_2 \cdot k_1 &= m_2^2 - m_1'^2 - u \end{align*} $$
### Particle Masses and Degrees of Freedom
Typemassspin$g$
quarks$t, \overline{t}$173 GeV$1/2$$2\cdot 2\cdot 3=12$
$b, \overline{b}$4 GeV
$c, \overline{c}$1 GeV
$s, \overline{s}$100 MeV
$d, \overline{d}$5 MeV
$u, \overline{u}$2 MeV
gluons$g_i$01$8 \cdot 2=16$
leptons$\tau^\pm$1777 MeV$1/2$$2\cdot 2 =4$
$\mu^\pm$106 MeV
$e^\pm$511 keV
$\nu_\tau, \overline{\nu}_\tau$< 0.6 eV$1/2$$2\cdot 1 = 2$
$\nu_\mu, \overline{\nu}_\mu$< 0.6 eV
$\nu_e, \overline{\nu}_e$< 0.6 eV
gauge bosons$W^+$80 GeV13
$W^-$80 GeV
$Z^0$91 GeV
$\gamma$0
Higgs boson$H^0$125 GeV01
Therefore, $g_b=28$ and $g_f=90$ so $g_*=g_b +\frac{7}{8}g_f=106.75$.